* in conjunction with §1 of Microeconomics Foundation I (Kreps, 2013)
Y. Eddie Lu, Fall 2024
Key Concepts Overview
Choices
Choices are observable actions taken when confronted with alternatives. Economists model choices using the following notations:
\(X\) |
Finite set of alternatives |
\(X = \{a,b,c\}\) |
\(P(X)\) |
All non-empty subsets of \(X\) |
\(P(X) = \{\{a\}, \{b\}, \{c\},\) \(\{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\) |
\(B \subseteq P(X)\) |
Set of feasible choice menus |
\(B = \{\{a\}, \{a,b\}, \{a,b,c\}\}\) |
\(c: B \to P(X)\) |
Choice function: \(c(A) \subset A\) |
\(c(\{a,b,c\}) = \{a,b\}\) |
Preferences
Preferences reflect internal evaluations of choices, modeled abstractly:
\(X\) |
Set of alternatives |
\(X = \{a,b,c\}\) |
\(X \times X\) |
Cartesian product: pairs of alternatives |
\((a,b), (b,c), \dots\) |
\(R \subseteq X \times X\) |
Binary relation: \((a,b) \in R \iff a \succsim b\) |
Preferences: \(a \succsim b, b \succsim c\) |
- Complete: For all \(x, y \in X\), \(x \succsim y\) or \(y \succsim x\).
- Transitive: \(x \succsim y\) and \(y \succsim z \implies x \succsim z\).
- Rational: \(R\) is complete and transitive.
Choices from Preferences
A rational binary relation \(R\) generates a choice function \(c_R\):
\[
c_R(A) := \{x \in A \mid (\forall y \in A) \, (x,y) \in R\}
\]
Proofs
If \(R\) is rational, then \(c_R\) is a choice function.
By mathematical induction. Need to show that \(c_R (A) \neq \emptyset\) for all \(A \subseteq X\).
Base Case (\(|A| = 1\)):
Let \(A = \{x\}\). A complete \(R\) implies that \((x,x) \in R\), which in turn implies that \(c_R (A) = \{x\} \neq \emptyset\).
Inductive Step (\(|A| = n + 1\)):
Assume true for \(|A| = n\). Pick any \(x \in A\). By assumption, \(c_R (A \setminus \{x\}) \neq \emptyset\).
- By definition, there exists \(y \in A \setminus \{x\}\) such that \((y,z) \in R\) for all \(z \in A \setminus \{x\}\).
- Since \(R\) is complete, either \((x,y) \in R\) or \((y,x) \in R\).
- If \((x,y) \in R\), then transitivity implies \((x,z) \in R\) for all \(z \in A\), so \(x \in c_R(A)\).
- If \((y,x) \in R\), then \(y \in c_R(A)\).
Thus, \(c_R (A) \neq \emptyset\) for all \(A \subseteq X\). \(\blacksquare\)
If \(c\) satisfies WARP, then \(R_c\) is a rational preference relation.
- Completeness:
Take any \(x, y \in X\).
- If \((x,y) \notin R_c\), then \(x \notin c(\{x,y\})\).
- By definition, \(y \in c(\{x,y\})\), so \((y,x) \in R_c\).
Therefore, \(R_c\) is complete.
- Transitivity:
Suppose \((x,y) \in R_c\) and \((y,z) \in R_c\).
- This implies \(x \in c(\{x,y\})\) and \(y \in c(\{y,z\})\).
- Assume \((x,z) \notin R_c\). Then \(z \in c(\{x,z\})\) contradicts WARP.
Hence, \((x,z) \in R_c\), and \(R_c\) is transitive. \(\blacksquare\)
Preferences Revealed by Choices
Revealed preference relation \(R_c\):
\[
R_c := \{(x,y) \in X \times X \mid x \in c(\{x,y\})\}
\]
If \(x, y \in A \cap B\), \(x \in c(A)\), and \(y \in c(B)\), then \(x \in c(B)\).
Back to top